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It is found that only a small change in either of the undisturbed velocity profiles 
concerned is required to change them from stable profiles to unstable profiles. 
The change must be such as to produce a local maximum in the magnitude of the 
vorticity, or in the case of the pipe, in the magnitude of the vorticity divided by 
the radius. The actual change in the vorticity (or vorticitylradius) need only be 
small, but the gradient of the vorticity (or vorticitylradius) must be finite. 
Viscosity will tend to damp out the distortion in the mean flow that is responsible 
for the instability, so that if the flow is to become turbulent, non-linear effects 
must become important before the distortion of the mean flow is reduced to an 
ineffective level. This requirement leads to the determination of critical Reynolds 
numbers which depend on the initial (small) distortion of the mean flow and the 
initial (smaller) amplitude of periodic disturbances. These critical Reynolds 
numbers are large. 

1. Introduction 
The motivation for this work comes from some experimental results of Leite 

(1956) reported also by Kuethe (1956). In  these experiments, disturbances to the 
flow of air through a pipe were produced by oscillations of a circular airfoil. 
The experiments of particular relevance to this discussion were performed at 
a Reynolds number of 12,000, observations of axial velocity being made by 
means of radial hot-wire traverses at cross-sections approximately 3,6 ,10  and 47 
diameters downstream of the airfoil. The remarks I wish to make are mainly 
concerned with the observations at the first three downstream stations, as the 
flow was practically fully turbulent a t  the station 47 diameters downstream of 
the airfoil. In  the following discussion, the unit of velocity will be taken as twice 
the mean velocity over a cross-section of the pipe, which would be equal to the 
velocity at the centre of the pipe if the flow were strictly Poiseuille flow. With 
this unit, the deviation of the mean flow profile from Poiseuille flow a t  each of the 
first three stations was found to be a function of the radius with a maximum 
deviation of between & and &. The deviation seemed to correspond to a wake 
behind the airfoil. In  contrast, the amplitude of the periodic disturbance pro- 
duced by the oscillations of the airfoil was only -& a t  the first station, but rose 
rapidly to a value of +o at the second station and $z (comparable with the mean 
flow deviation) at the third. This seems to demonstrate that the change in the 
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mean flow was imposed by the airfoil and that the changed mean flow profile was 
unstable. Before starting the work reported here, I had one result available 
which explains the lack of change in the distortion of the mean flow in the first 
eight or so diameters where the Reynolds stress due to the periodic disturbance 
must have been too small to have any significant effect. This result (Gill 1965, 
$6)  showed that the change in the mean flow could be expressed as the sum of 
a series of modes, each damped out a t  a different rate. At a Reynolds number of 
12,000, however, the result shows that the first three modes would only be 
reduced by 5, 15 and 27 % in a downstream distance of 10 diameters. 

2. Instability of distorted profiles 
It remained, then, to show that the distorted profile is unstable and that the 

growth rate is large enough for non-linear effects to become important before the 
distortion in the mean flow (which, after all, is responsible for the instability) is 
reduced too much by the action of viscosity. It seemed that this might be a little 
difficult in the context of axisymmetric flows with disturbances of a given 
frequency growing or decaying with downstream distance, but I thought that 
the problem would be basically the same when put in terms of two-dimensional 
flows with disturbances of given wave-number growing or decaying with time, 
the latter problem being simpler mathematically. Thus I was led to consider 
the stability of the flows which are slight distortions of plane Couette flow. 

At first I chose a profile for which the distortion had a Gaussian distribution, 
this corresponding, say, to a wake produced by a flat ribbon placed across the 
flow. Such a profile has the form 

u = Y- AexPi- r(Y-Y*/o)/~12~ (IYI 111 

U being the velocity in the x-direction, and A ,  yo, B being constants. The first 
problem is to find the 'threshold' amplitude, AthreBh, for which the profile f i s t  
becomes unstable, given yo and E .  One would expect that long wavelengths 
would become unstable first, so one looks for the value of A for which long- 
wavelength disturbances are just neutral. The condition for this is that 

where cs is chosen as the value of U corresponding to the point where I U'I is 
a maximum. With the help of some subroutines developed by Professors Landahl 
and Howard, I computed K,(cs) for various values of A ,  yo and E at the Computa- 
tion Center at M.I.T. However, it soon became apparent that the threshold 
amplitude, Athresh., corresponding to K,(c,) being zero could be made as small as 
desired, simply by taking E small enough. 
This led to a new, and more general, formulation being an asymptotic approach 

in the limit as B+ 0. The profile is taken to have the form 

u = Y+s2aW[(y-Y/,)/El ( lY l  I),  (2.2) 
where max I WI = 1 and Iy,,l < 1. The factor e2 is one that comes out in the wash 

so that the value of a for which the profile is just unstable is of order unity. 
II 
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Differentiating (2.2), we find that the vorticity, U‘, is given by 

77’ = 1 +eawI[(y- yo)/e]. (2.3) 

Thus for a profile for which W’-+ 0 as (y -yo)/€ -+ CO, the vorticity is uniform 
except for some additional vorticity near the point y = yo. If the flow is to be 
unstable, i t  is necessary for U’ to have a local maximum. Introducing the 
co-ordinate 

to designate points in the narrow region of extra vorticity, the vorticity maximum 
will be at a point 7 = 7, given by 

with W”(7)/(y - 7,) negative on either side of 7,. 

W”(7,) = 0, 

The relation (2.1) for the threshold amplitude becomes, in the limit as e+O, 

(2 .5 )  

and it will be assumed that W(7) is of such a form that the integral in (2.5) exists 
and is finite, and that a considerable fraction of the integral on ( - CO, 00) is 
contributed by a certain finite interval, ( - 1 , l )  say. Rosenbluth & Simon (1964) 
have in fact shown that if the profile is monotonic (implied here by (2.3)) and if 
W” has only a single zero, a necessary and suficient condition for instability is 
that K,(c,) > 0, that is, in our case that a > athresh. where athresh. is the threshold 
value of a given by (2.5). 

Notice from (2.2) and (2.3) that although the changes in U and U‘ are small, 
the change in U“ is of order unity. It is interesting to compare this with Meksyn 
& Stuart’s (1951) result for a rather different problem concerning finite- 
amplitude disturbances to plane Poiseuille flow, where considerable changes 
result from small changes in the mean profile, which imply, nevertheless, con- 
siderable changes in U“. 

The next question to be answered is ‘What growth rates are associated with 
a distortion of the mean flow of given amplitude a?’ It can be seen from (2.5) 
that for a given distortion profile W(q),  the threshold amplitude is least when 
yo = 0, and becomes relatively large if the narrow region given by 7 = O(1) is 
close to one of the walls. Thus in the following we will consider only the case 
yo = 0, and will further simplify the calculations by assuming that W(7) is an 
antisymmetric function of 7. This means that the vorticity is a symmetric 
function of 7 with a maximum a t  the centre. The simplifying feature is that the 
wave-speed of the disturbance is zero. 

The growth rate, aci, associated with a disturbance of wave-number a can be 
found in the usual way by looking for self-exciting disturbances whose stream 
function has the form 

with c the complex number c = c, + ici. The equation for q5 expresses the fact that 
the vorticity of a material particle of fluid remains constant throughout its 
motion. In  the region near the centre where the vorticity U’ of the undisturbed 
flow is not constant, small motions in the y-direction tend to give the particle an 

Re{q5(y)eia(z-eo) (2.6) 



506 A .  E. Gill 

excess or defect of vorticity relative to its surroundings, this vorticity being 
transferred to the disturbance. The disturbance vorticity is given by 

Re{($"- a2#)eia(z-ct)} 

and the equation representing the transfer of vorticity is 

(U-c)($Y-a2$)-UN$ = 0. (2.7) 

In  the region away from the centre ( ly/€1 9 l), there is no transfer of vorticity 
to the disturbance, so that the periodic part of the flow must be irrotational. 
This is clear for cases in which the vorticity is uniform away from the centre, but 
may be shown to be true in more general circumstances. In order to satisfy the 
boundary conditions $( & 1) = 0, we require 

$ = sinh[a(l- ly])]/sinha for Iy/e/ B 1, (2.8) 

where we have adopted the normalization $ ( O )  = 1. This is the only non-trivial 
solution that satisfies the boundary condition, is irrotational except a t  y = 0, 
and has the normal velocity continuous across the surface y = 0. However, the 
solution requires a jump in the tangential velocity of 

(2.9) 

across the surface y = 0 representing a vortex sheet with periodically changing 
strength, and this vorticity has to be supplied by transfer from the mean flow. 
Sufficient vorticity can be transferred only if the amplitude, a, is large enough, 
i.e. a > athresh.. On the other hand, given a > athresh., the amount of vorticity 
supplied depends on c,, so the requirement on the amount of vorticity to be 
supplied gives a relation between ci and a. From (2.7) we have that near y = 0 

- 2a coth a Re (eiaQ-cL)} 

where c = isk, so that if a is of order unity the change in d$/dy across the layer 
is given by 

(2.10) 

the latter equality coming from comparison with (2.9). From (2.10) it  follows 
that the range 0 < a < a, of wave-numbers is unstable, where a, is given by 

Bas coth a, = -a  jYm F ) d ' I .  

3) for 1'11 < 1, 
Example (i) 

This is a profile corresponding to extra vorticity given by 

W' = * ( I - ' I Z ) ,  I'Il < 1. 

The relation (2.10) in this case is 

a coth a = 3a{ 1 - k tan-l (1/k)), 

so that the threshold amplitude is Q. 
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Example (ii) W = sinq. 

This example is a little different in that the additional vorticity is not con- 
fined to a thin layer, but varies rapidly across the flow. There are several maxima 
of vorticity, and so several possible solutions, but the one with the smallest 
threshold amplitude is the solution associated with the maximum at the centre, 
as is shown by (2.5). The formula (2.8) to (2.10), it  turns out, are still valid first 
approximations in this case since most of the vorticity transfer takes place near 
the centre where the convection in the x-direction is weakest. In  particular, 
(2.10) becomes 

2a coth a = 7raexp ( - k), (2.11) 

so that the threshold amplitude is athresh. = 211~. If a is about 1.28 times the 
threshold amplitude, the maximum value of ak is 0.083 corresponding to the 
wave-number a = 0.53, and if a NN 2.72 uthresh., the maximum value of ak is 0.76 
corresponding to the wave-number a = 1.25. 

Undisturbed 
vorticity 

I 

FIGURE 1. On the left is shown an undisturbed vorticity distribution with maximum at 
y = 0. On the right is shown a convecting field of the form normally considered in stability 
analysia. The circles show the sign of the vorticity acquired by the disturbance under this 
convection field. It will be observed that the sign of the acquired vorticity is everywhere 
such aa to strengthen the disturbance. If the undisturbed vorticity distribution had a 
minimum at y = 0 instead, the sign of the acquired disturbance vorticity would be 
reversed and the disturbance inhibited. 

In  previous formulae such as (2.5) and (2.10) the importance of the sign of 
W"(q) is brought out, that is, the fact that for instability it is necessary to have 
a local maximum in the modulus of the vorticity. It seems worthwhile examining 
the physical reason for this. The argument of Lin (1955, $4.4) and Lighthill 
(Rosenhead 1963, p. 92) cannot differentiate between a maximum and a mini- 
mum of vorticity because they only take into account the effects of moving 
material elements in the y-direction. To see why there must be a local maximum 
of vorticity for instability it is necessary to consider convection of elements in 
the x-direction as well. Now, in a normal-mode approach one looks for disturb- 
ances that excite themselves. In  other words the disturbed motion will transfer 
vorticity to the disturbance in such a way that the motion induced by the 
acquired vorticity will be a strengthening of the original disturbance motion. 
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Let us look for such a self-exciting disturbance. We will assume that the disturb- 
ance has the form (2.5) so that the convecting field will have the form shown in 
figure 1 with the cat’s-eye pattern exhibited in part of the flow. For y > 0, a 
material element displaced upward will have positive vorticity relative to its 
surroundings, and if displaced downward, negative vorticity. The signs of the 
acquired disturbance vorticity produced by the convection field are shown in the 
diagram. It will be observed that the motion induced by this acquired vorticity 
is everywhere such as to strengthen the disturbance so it is possible for the 
disturbance to be self-excited. If the undisturbed vorticity distribution had a 
minimum a t  y = 0 instead of a maximum, the signs of the acquired disturbance 
vorticity would everywhere be reversed, so the disturbance would be inhibited. 
If the variation of vorticity were monotonic across y = 0, the field could not be 
self-excited either as the figure would be reversed on one side of the cat’s eyes. 

The above argument seems to show that it is necessary for instability to have 
a maximum in the undisturbed vorticity distribution. However, given such a 
distribution of vorticity, one cannot infer that the disturbance will be self- 
excited because the boundary conditions have not been taken into account. The 
previous analysis indicates that the presence of boundaries has an inhibiting 
effect on the disturbance, which is more pronounced the greater is a because of 
the greater vorticity required in the central layer to maintain the flow outside 
the layer. 

3. Viscous effects and a ‘critical’ Reynolds number 
The instabilities discussed in 2 are produced by distortions of the mean flow, 

but such distortions will be damped out by viscosity so long as the Reynolds 
stresses produced by the disturbance are small enough. Given a change u(y,  t )  in 
the mean velocity from the original Couette flow, one finds, on neglecting squares 
of u, that u satisfies the heat equation 

aupt = R-1 a2ulay2, (3.1) 

where R is the Reynolds number based on half the difference between the 
velocities of the plates and half the distance between the plates. There is no 
v-component by continuity. It follows immediately that for changes with a 
y-scale of order E ,  the time scale for the viscous processes is of order s2R. 

This is also the time scale on which viscous damping of the periodic disturb- 
ances discussed in § 2 would become important. It has been tacitly assumed in 
Q 2 that this time scale is large compared with the time scale for growth under 
non-viscous processes, the latter being of order 1,k when the amplitude of the 
distortion of the mean flow is of the same order as the threshold amplitude. In 
other words, it  has been assumed that e3R is large. It will now be shown that s3R 
must necessarily be large if non-linear effects are to become important, as they 
must do if the flow is to become turbulent. 

The non-linear effects, such as the generation of harmonics and the transfer 
of energy from the mean flow to the disturbance by the action of Reynolds 
stresses, become important when the periodic disturbance has grown comparable 
with the distortion of the mean flow. We will assume that this requires growth 
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by a factor of ( l / e ) P ,  that is that the periodic disturbance is initially smaller than 
the distortion of the mean flow by a factor e p ,  where p is a positive constant. 
By 3 2,  the time taken for growth by this amount will be of order e-llog (l/e). 
During this time the distortion of the mean flow must not have been reduced in 
amplitude below the threshold amplitude, for otherwise the disturbance would 
have grown to a maximum and begun to decay before any significant non-linear 
effects could occur. Since the time scale for changes in the mean flow is of order 
e2R, the Reynolds number must be of order 

R ~-310g (1/e), (3.2) 

or larger. This is the result that indicates that very large Reynolds numbers are 
required for instabilities of the type discussed here. 

Example. The separable solutions of (3.1), antisymmetric in y ,  are given by 

(3.3) 

where n is a positive integer. If nn is large, we can identify l/nr with e and the 
growth rate, eak, at any given time is given by (2.11), a now being the function 
of time given by (3.3), namely 

a = a, exp ( - t/e2R); 

a, is the value of a a t  t = 0. A ‘ quasi-linear ’ theory is valid since the changes in 
the mean flow are assumed to take place in a time large compared with the time 
scale for the growth of disturbances. The growth of the disturbance in time twill 

u = a, sin ( n r y )  exp ( - n2n2t/R), 

be by a factor 
exp [I: eak(t) dt] = exp (t.ak,,t - 

which will be equal to (l/e)p when the non-linear effects become important. 
Assuming that the disturbance is still growing a t  this stage, say at half the 
original rate, we have also 

eak,-at/eR = ieak,, 

and eliminating t from the two relationships we obtain 

R = (8p/3aki) @log (l/e). 

The coefficient 8p/3aki depends on the initial distortion of the mean flow, the 
initial amplitude of the periodic disturbance, and on the wave number a. If p 
and a, are given, the coefficient depends on a and has a minimum for a certain 
value of a; e.g. if p = 2,  a, = 2at,,,,., then the minimum value of the coefficient 
is about 27 corresponding to a wave number of about 0.7. If n = 1, e = l /n (not 
really small), this gives a ‘critical’ Reynolds number of about 1000, while if 
n = 2,  the ‘critical’ Reynolds number is more like 10,000. Of course these 
figures only give a rough idea of the Reynolds numbers involved as they are based 
on somewhat arbitrary standards. If a larger initial amplitude of the distortion 
in the mean flow is allowed then, of course, the ‘critical ’ Reynolds number will 
be smaller. The ‘critical’ Reynolds number is also smaller if the periodic disturb- 
ances are initially greater in magnitude. 
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4. The case of Poiseuille flow in a pipe 
Unless the layer in which d(r-ldU/dr)/dr is non-zero is very close to the centre 

of the pipe, the behaviour of the periodic disturbance in the layer is, to the first 
order, the same as in the two-dimensional case since the layer is thin compared 
with its radius. r is the radial co-ordinate. The irrotational flow outside the layer 
will, of course, be different in the axisymmetric case, so that, for instance, the 
expression acotha on the right-hand side of (2.10) will be replaced by an 
expression involving modified Bessel functions. Also it does not make a great 
deal of difference whether one considers disturbances growing in space or growing 
in time because the growth rate is small (cf. Gaster 1962). 

For the axisymmetric case there are various ways of defining E. Here we will 
define E as the change in r2 across the layer so that E is a measure of the cross- 
sectional area of the layer. This definition is convenient in the discussion of the 
threshold amplitude because, for a = 0, the equation for axisymmetric disturb- 
ances to an axisymmetric flow is the same as (2.7) with a = 0 and with y = r2 
(Batchelor & Gill 1962, equation (2.16) with n = 0 and rG = q5). The boundary 
conditions are q5 = 0 at y = 0 and y = 1 and the equilibrium profile is U = 1 -Y 
so that the problem is exactly the same as for plane Couette flow. The threshold 
amplitude will be smallest when y = S(r z 0.7) and becomes relatively large 
when the layer is near the wall or near the centre of the pipe. 

The theory as developed so far seems to fit the conditions of Leite’s (1956) 
experiment very satisfactorily, but what about the situation of Reynolds’s originaI 
experiment ? Here fluid enters the pipe with approximately uniform velocity 
setting up at the wall a vortex sheet which diffuses in toward the centre, the 
Poiseuille profile eventually being set up (Goldstein 1938, $ 139). There seem to 
be no experimental results available which show the changes in mean profile and 
disturbance amplitude in detail, so we can only speculate on possible causes of 
the observed instability. Tatsumi (1952) has shown that the boundary layer is 
unstable in part of the entry region, but it is not clear whether this instability 
plays an important role in producing the observed effects such as the sudden 
rapid oscillations of the dye column in Reynolds’s experiment at a certain 
distance from the nozzle. 

However, it  is instructive to consider the stability of slightly distorted profiles. 
Before the vortex layer at the wall has diffused to the radius a t  which the ‘bump ’ 
in the mean profile is situated, the bump will just represent a velocity change of 
order e2 superimposed on the uniform flow. If the effects of the boundary layer 
near the wall are ignored, the stability of such profiles for wave-numbers of 
order unity can be examined by a method similar to that of Drazin & Howard 
(1962) since the wavelength is large compared with the thickness of the layer. 
The growth rate is of order €2 for a half-jet profile and of order €4 for a full-jet 
profile. In  either case the rate of growth of disturbances is very small until 
vorticity has diffused out as far as the layer and the effects of the shear become 
felt. Then the growth rate will be of order E as was found in $2.  This sudden 
change in growth rate could well be associated with the delay in noticeable 
instabilities until a certain distance from the nozzle. On the other hand, in 
the distance which is required for the vorticity to diffuse out to the region of 
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the layer, the bump on the mean-flow profile will have diffused considerably 
also, unless Reynolds stresses due to periodic disturbances are sufficient to 
counteract the diffusion to some extent at least. It is to be hoped that experi- 
ments will help to throw light on this question. 

Finally, it  should be remarked that the mechanism of instability discussed in 
this paper is a finite amplitude one, but differs, from the non-linear model for 
instability of plane Couette flow suggested by Watson (1960). In  Watson’s model 
changes in the mean flow are secondary in the sense that they are produced by 
Reynolds stresses resulting from a fluctuating disturbance. The model discussed 
in this paper on the other hand, suggests that the zero wave-number component 
of the disturbance spectrum, that is the imposed change in the mean flow, plays 
an important part in the instability. 

This work was sponsored by the Office of Naval Research and was carried out 
at the Mathematics Department, Massachusetts Institute of Technology. 
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